Materials Cycles

When materials from the earth's crust, including metals and fossil fuels, are mined more rapidly than they are redeposited in the crust, they accumulate in the biosphere. In addition, manufacturing processes are causing many of the 100,000 chemicals in commercial use to accumulate in the biosphere. These materials from the crust and from manufacturing processes are known to cause a wide range of health impacts, including cancers, birth defects, endocrine disruption, and breathing disorders. They also cause climate change, acid rain, and other major ecosystem impacts.

These yarns utilize non-toxic dyes derived from plant materials.

Such materials include zinc, with an annual industrial flow eight times that of all natural flows, copper (twenty-four times), lead (twelve times), and chromium (five times). Largely due to fossil fuel use, industrial flows of carbon, the backbone of living systems, now dwarf natural flows, causing a dramatic increase of carbon dioxide in the atmosphere and placing climatic stability at risk.

Synthetic compounds that are being produced more rapidly than they can be broken down by ecosystems are also systematically building up in the biosphere. Many of these compounds, including dioxins, persistent organic pollutants, and pesticides, have known Health impacts on people and other species, causing cancers, asthma, endocrine disruption, and many other illnesses. Thousands of other compounds almost certainly have similar impacts, but have never been properly studied.

There is no guarantee that ecosystems can survive the systematic buildup of any substance without significant effects. Therefore, we must extract and use materials in such a way that they do not systematically accumulate in the biosphere, any bioregion, or any ecosystem. We must also ensure that mining and manufacturing operations do not cause health impacts, and that mining and brownfield sites are completely restored.

New materials cycles emphasize materials that are highly abundant (nitrogen, phosphorous, carbon, earth, sand, gravel, iron, caliche, hydrogen, silicon, titanium, aluminum, etc.), non-toxic, and capable of being digested by ecosystems and eventually sequestered back in the crust.

Enormous quantities of these materials already flow through the biosphere, making their industrial use potentially compatible with existing biogeochemical cycles. Materials that are scarce, toxic, difficult to safely extract, or difficult to safely sequester can only be used in tightly controlled loops which do not leak into the biosphere. During all stages of extraction, manufacturing, and use, the number of types and the quantities of such compounds should be reduced. This can be done by substituting compounds (e.g. citrus-based solvents) or changing the design. Any remaining toxic compounds should be produced as needed on-site from non-toxic precursors and only used in products if they will be completely isolated and inert during the lifetime of the product.

When any toxic compounds are used, the product must be designed for Product as Service so the compounds can be kept in a completely closed industrial loop. Under no circumstances can toxic compounds be released to air, water, or soil during any part of a product's lifecycle. With better materials cycles, humans and other species will have an opportunity to cleanse themselves of poisons. We may imagine chemical companies evolving to selling non-toxic processes and services, pesticide companies selling pest-control services, and Green Building with non-toxic carpets, furniture, and paints.

Resource Efficiency decreases both the overall flow of materials in the industrial economy and their inevitable leakage into the biosphere. This decreases the need for raw materials, making materials cycles cheaper and more feasible.

Do not allow materials from the earth's crust and from society to systematically accumulate in the biosphere. Use materials which are highly abundant, non-toxic, and easily broken down by ecosystems. When their use is necessary, toxic or persistent compounds should be kept in tightly controlled loops and completely reclaimed at the end of a product's life. Promote resource efficiency to minimize the need for raw materials.